顯微鏡以顯微原理進(jìn)行分類可分為光學(xué)顯微鏡與電子顯微鏡和數(shù)碼顯微鏡。
光學(xué)顯微鏡
通常皆由光學(xué)部分、照明部分和機(jī)械部分組成。無疑光學(xué)部分是zui為關(guān)鍵的,它由目鏡和物鏡組成。早于1590年,荷蘭和意大利的眼鏡制造者已經(jīng)造出類似顯微鏡的放大儀器。光學(xué)顯微鏡的種類很多,主要有明視野顯微鏡(普通光學(xué)顯微鏡)、暗視野顯微鏡、熒光顯微鏡、相差顯微鏡、激光掃描共聚焦顯微鏡、偏光顯微鏡、微分干涉差顯微鏡、倒置顯微鏡。
電子顯微鏡
電子顯微鏡有與光學(xué)顯微鏡相似的基本結(jié)構(gòu)特征,但它有著比光學(xué)顯微鏡高得多的對(duì)物體的放大及分辨本領(lǐng),它將電子流作為一種新的光源,使物體成像。自1938年Ruska發(fā)明*臺(tái)透射電子顯微鏡至今,除了透射電鏡本身的性能不斷的提高外,還發(fā)展了其他多種類型的電鏡。如掃描電鏡、分析電鏡、超高壓電鏡等。結(jié)合各種電鏡樣品制備技術(shù),可對(duì)樣品進(jìn)行多方面的結(jié)構(gòu)或結(jié)構(gòu)與功能關(guān)系的深入研究。顯微鏡被用來觀察微小物體的圖像。常用于生物、醫(yī)藥及微小粒子的觀測。電子顯微鏡可把物體放大到200萬倍。
臺(tái)式顯微鏡,主要是指傳統(tǒng)式的顯微鏡,是純光學(xué)放大,其放大倍率較高,成像質(zhì)量較好,但一般體積較大,不便于移動(dòng),多應(yīng)用于實(shí)驗(yàn)室內(nèi),不便外出或現(xiàn)場檢測。
便攜式顯微鏡
便攜式顯微鏡,主要是近幾年發(fā)展出來的數(shù)碼顯微鏡與視頻顯微鏡系列的延伸。和傳統(tǒng)光學(xué)放大不同,手持式顯微鏡都是數(shù)碼放大,其一般追求便攜,小巧而精致,便于攜帶;且有的手持式顯微鏡有自己的屏幕,可脫離電腦主機(jī)獨(dú)立成像,操作方便,還可集成一些數(shù)碼功能,如支持拍照,錄像,或圖像對(duì)比,測量等功能。
一臺(tái)的顯微鏡,及其配件.
數(shù)碼液晶顯微鏡,zui早是由博宇公司研發(fā)生產(chǎn)的,該顯微鏡保留了光學(xué)顯微鏡的清晰,匯集了數(shù)碼顯微鏡的強(qiáng)大拓展、視頻顯微鏡的直觀顯示和便攜式顯微鏡的簡潔方便等優(yōu)點(diǎn)。
掃描隧道顯微鏡
掃描隧道顯微鏡亦稱為“掃描穿隧式顯微鏡”、“隧道掃描顯微鏡”,是一種利用量子理論中的隧道效應(yīng)探測物質(zhì)表面結(jié)構(gòu)的儀器。它于1981年由格爾德·賓寧(G.Binning)及海因里希·羅雷爾(H.Rohrer)在IBM位于瑞士蘇黎世的蘇黎世實(shí)驗(yàn)室發(fā)明,兩位因此與恩斯特·魯斯卡分享了1986年諾貝爾物理學(xué)獎(jiǎng)。
它作為一種掃描探針顯微術(shù)工具,掃描隧道顯微鏡可以讓科學(xué)家觀察和定位單個(gè)原子,它具有比它的同類原子力顯微鏡更加高的分辨率。此外,掃描隧道顯微鏡在低溫下(4K)可以利用探針操縱原子,因此它在納米科技既是重要的測量工具又是加工工具。
STM使人類*次能夠?qū)崟r(shí)地觀察單個(gè)原子在物質(zhì)表面的排列狀態(tài)和與表面電子行為有關(guān)的物化性質(zhì),在表面科學(xué)、材料科學(xué)、生命科學(xué)等領(lǐng)域的研究中有著重大的意義和廣泛的應(yīng)用前景,被科學(xué)界*為20世紀(jì)80年代世界科技成就之一。